The number of possible straight lines , passing through $(2, 3)$ and forming a triangle with coordinate axes, whose area is $12 \,sq$. units , is
$1$
$2$
$3$
$4$
A straight line through the point $(1, 1)$ meets the $x$-axis at ‘$A$’ and the $y$-axis at ‘$B$’. The locus of the mid-point of $AB$ is
The vertex of an equilateral triangle is $(2,-1)$ and the equation of its base in $x + 2y = 1$. The length of its sides is
Let $PS$ be the median of the triangle with vertices $P(2,\;2),\;Q(6,\; - \;1)$ and $R(7,\;3)$. The equation of the line passing through $(1, -1)$ and parallel to $PS$ is
$P (x, y)$ moves such that the area of the triangle formed by $P, Q (a , 2 a)$ and $R (- a, - 2 a)$ is equal to the area of the triangle formed by $P, S (a, 2 a)\,\,\, \&\,\, \,T (2 a, 3 a)$. The locus of $'P'$ is a straight line given by :