The number of positive integral solutions $\left| {\,\,\begin{array}{*{20}{c}}{1 - \lambda }&2&1\\{ - 3}&\lambda &{ - 2}\\2&{ - 2}&{1 + \lambda }\end{array}\,\,} \right|$ $= 0$ is

  • A

    $0$

  • B

    $2$

  • C

    $3$

  • D

    $1$

Similar Questions

If ${a_1},{a_2},{a_3}.....{a_n}....$ are in $G.P.$ then the value of the determinant $\left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}}\\{\log {a_{n + 3}}}&{\log {a_{n + 4}}}&{\log {a_{n + 5}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 7}}}&{\log {a_{n + 8}}}\end{array}\,} \right|$ is

  • [AIEEE 2005]

Let $S=\left\{A=\left(\begin{array}{lll}0 & 1 & c \\ 1 & a & d \\ 1 & b & e\end{array}\right): a, b, c, d, e \in\{0,1\}\right.$ and $\left.|A| \in\{-1,1\}\right\}$, where $|A|$ denotes the determinant of $A$. Then the number of elements in $S$ is. . . . .

  • [IIT 2024]

Value of $\left| {\begin{array}{*{20}{c}}
  0&{x - y}&{x - z} \\ 
  {y - x}&0&{y - z} \\ 
  {z - x}&{z - y}&0 
\end{array}} \right|$ is

If the system of equations $x + ay = 0,$ $az + y = 0$ and $ax + z = 0$ has infinite solutions, then the value of $a$ is

  • [IIT 2003]

The roots of the equation $\left| {\,\begin{array}{*{20}{c}}{x - 1}&1&1\\1&{x - 1}&1\\1&1&{x - 1}\end{array}\,} \right| = 0$  are