$\int\limits_a^b {{\mathop{\rm sgn}} \,x} \,\,dx$ $=$ (where $a, b \in R$)
$| b | - | a |$
$(b-a)\, sgn\, (b-a)$
$b\, sgnb - a\, sgna$
Both $(A)$ and $(C)$
Let $J=\int_0^1 \frac{x}{1+x^8} d x$
Consider the following assertions:
$I$. $J>\frac{1}{4}$
$II$. $J<\frac{\pi}{8}$ Then,
If for all real triplets $(a, b, c), f(x)=a+b x+c x^{2}$ then $\int \limits_{0}^{1} f(\mathrm{x}) \mathrm{d} \mathrm{x}$ is equal to
The value of integral $\int_0^1 {{e^{{x^2}}}} dx$ lies in interval
$I=\int \limits_{\pi / 4}^{\pi / 3}\left(\frac{8 \sin x-\sin 2 x}{x}\right) d x$. Then
Let $I = \mathop \smallint \limits_0^1 \frac{{\sin x}}{{\sqrt x }}\;dx$ and $\;J = \mathop \smallint \limits_0^1 \frac{{\cos x}}{{\sqrt x }}\;dx$ Then which one of the following is true?