The tangent to the circle $C_1 : x^2 + y^2 - 2x- 1\, = 0$ at the point $(2, 1)$ cuts off a chord of length $4$ from a circle $C_2$ whose centre is $(3, - 2)$. The radius of $C_2$ is
$\sqrt 6 $
$2$
$\sqrt 2 $
$3$
Let $r_{1}$ and $r_{2}$ be the radii of the largest and smallest circles, respectively, which pass through the point $(-4,1)$ and having their centres on the circumference of the circle $x^{2}+y^{2}+2 x+4 y-4= 0.$ If $\frac{r_{1}}{r_{2}}=a+b \sqrt{2}$, then $a+b$ is equal to:
The intercept on the line $y = x$ by the circle ${x^2} + {y^2} - 2x = 0$ is $AB$ . Equation of the circle with $AB$ as a diameter is
The co-axial system of circles given by ${x^2} + {y^2} + 2gx + c = 0$ for $c < 0$ represents
The equation of the circle which passing through the point $(2a,\,0)$ and whose radical axis is $x = \frac{a}{2}$ with respect to the circle ${x^2} + {y^2} = {a^2},$ will be
The number of common tangents to the circles ${x^2} + {y^2} = 4$ and ${x^2} + {y^2} - 6x - 8y = 24$ is