The negation of the Boolean expression $x \leftrightarrow \sim y$ is equivalent to 

  • [JEE MAIN 2020]
  • A

    $(\sim x \wedge y) \vee(\sim x \wedge \sim y)$

  • B

    $(x \wedge \sim y) \vee(\sim x \wedge y)$

  • C

    $(x \wedge y) \vee(\sim x \wedge \sim y)$

  • D

    $(x \wedge y) \wedge(\sim x \vee \sim y)$

Similar Questions

For integers $m$ and $n$, both greater than $1$ , consider the following three statements
$P$ : $m$ divides $n$
$Q$ : $m$ divides $n^2$
$R$ : $m$ is prime,
then true statement  is

  • [JEE MAIN 2013]

The statement $( p \rightarrow( q \rightarrow p )) \rightarrow( p \rightarrow( p \vee q ))$ is

  • [JEE MAIN 2020]

Let $*, \square \in\{\wedge, \vee\}$ be such that the Boolean expression $(\mathrm{p} * \sim \mathrm{q}) \Rightarrow(\mathrm{p} \square \mathrm{q})$ is a tautology. Then :

  • [JEE MAIN 2021]

The following statement $\left( {p \to q} \right) \to $ $[(\sim p\rightarrow q) \rightarrow  q ]$ is

  • [JEE MAIN 2017]

The statement $p \rightarrow  (q \rightarrow p)$  is equivalent to

  • [AIEEE 2008]