The negation of $ \sim s \vee \left( { \sim r \wedge s} \right)$ is equivalent to

  • A

    $s \wedge  \sim r$

  • B

    $s \wedge \left( {r \wedge  \sim s} \right)$

  • C

    $s \vee \left( {r \vee  \sim s} \right)$

  • D

    $s \wedge r$

Similar Questions

The contrapositive of statement 'If Jaipur is capital of Rajasthan, then Jaipur is in India' is 

$( S 1)( p \Rightarrow q ) \vee( p \wedge(\sim q ))$ is a tautology $( S 2)((\sim p ) \Rightarrow(\sim q )) \wedge((\sim p ) \vee q )$ is a Contradiction. Then

  • [JEE MAIN 2023]

Which of the following Boolean expressions is not a tautology ?

  • [JEE MAIN 2021]

$\sim (p \vee q) \vee (\sim p \wedge q)$ is logically equivalent to

The expression $ \sim ( \sim p\, \to \,q)$ is logically equivalent to

  • [JEE MAIN 2019]