The negation of $ \sim s \vee \left( { \sim r \wedge s} \right)$ is equivalent to
$s \wedge \sim r$
$s \wedge \left( {r \wedge \sim s} \right)$
$s \vee \left( {r \vee \sim s} \right)$
$s \wedge r$
The contrapositive of statement 'If Jaipur is capital of Rajasthan, then Jaipur is in India' is
$( S 1)( p \Rightarrow q ) \vee( p \wedge(\sim q ))$ is a tautology $( S 2)((\sim p ) \Rightarrow(\sim q )) \wedge((\sim p ) \vee q )$ is a Contradiction. Then
Which of the following Boolean expressions is not a tautology ?
$\sim (p \vee q) \vee (\sim p \wedge q)$ is logically equivalent to
The expression $ \sim ( \sim p\, \to \,q)$ is logically equivalent to