The mean of the numbers $a, b, 8,5,10$ is $6$ and their variance is $6.8$. If $M$ is the mean deviation of the numbers about the mean, then $25\; M$ is equal to
$60$
$55$
$50$
$45$
Consider $10$ observation $\mathrm{x}_1, \mathrm{x}_2, \ldots, \mathrm{x}_{10}$. such that $\sum_{i=1}^{10}\left(x_i-\alpha\right)=2$ and $\sum_{i=1}^{10}\left(x_i-\beta\right)^2=40$, where $\alpha, \beta$ are positive integers. Let the mean and the variance of the observations be $\frac{6}{5}$ and $\frac{84}{25}$ respectively. The $\frac{\beta}{\alpha}$ is equal to :
If the mean of the data : $7, 8, 9, 7, 8, 7, \mathop \lambda \limits^. , 8$ is $8$, then the variance of this data is
Two sets each of 20 observations, have the same standard derivation 5. The first set has a mean 17 and the second a mean 22. Determine the standard deviation of the set obtained by combining the given two sets.
Let ${x_1}\;,\;{x_2}\;,\;.\;.\;.\;,{x_n}$ be $n$ observations, and let $\bar x$ be their arithmaetic mean and ${\sigma ^2}$ be the variance
Statement $-1$ :Variance of $2{x_1}\;,2\;{x_2}\;,\;.\;.\;.\;,2{x_n}$ is $4{\sigma ^2}$ .
Statement $-2$: Arithmetic mean $2{x_1}\;,2\;{x_2}\;,\;.\;.\;.\;,2{x_n}$ is $4\bar x$.
Calculate mean, variance and standard deviation for the following distribution.
Classes | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
${f_i}$ | $3$ | $7$ | $12$ | $15$ | $8$ | $3$ | $2$ |