The maximum static frictional force is

  • A

    Equal to twice the area of surface in contact

  • B

    Independent of the area of surface in contact

  • C

    Equal to the area of surface in contact

  • D

    None of the above

Similar Questions

A man pulls a block heavier than himself with a light horizontal rope. The coefficient of friction is the same between the man and the ground, and between the block and the ground

A lift is moving downwards with an acceleration equal to acceleration due to gravity. $A$ body of mass $M$ kept on the floor of the lift is pulled horizontally. If the coefficient of friction is $\mu $, then the frictional resistance offered by the body is

When a body slides down from rest along a smooth inclined plane making an angle of $45^o$ with the horizontal, it takes time $T$. When the same body slides down from rest along a rough inclined plane making the same angle and through the same distance, it is seen to take time $pT$, where $p$ is some number greater than $1$. Calculate the coefficient of friction between the body and the rough plane.

An army vehicle of mass $1000\, kg$ is moving with a velocity of $10 \,m/s$ and is acted upon by a forward force of $1000\, N$ due to the engine and a retarding force of $500 \,N$ due to friction. ........... $m/s$ will be its velocity after $10\, s$

The coefficient of static friction, $\mu _s$ between block $A$ of mass $2\,kg$ and the table as shown in the figure is $0.2$. What would be the maximum mass value of block $B$ so that the two blocks $B$ so that the two blocks do not move? The string and the pulley are assumed to be smooth and masseless ....... $kg$ $(g = 10\,m/s^2)$