The line $2x - y + 1 = 0$ is tangent to the circle at the point $(2, 5)$ and the centre of the circles lies on $x-2y=4$. The radius of the circle is 

  • A

    $3 \sqrt{5}$

  • B

    $5 \sqrt{3}$

  • C

    $2 \sqrt{5}$

  • D

    $5 \sqrt{2}$

Similar Questions

Lines are drawn from a point $P (-1, 3)$ to a circle $x^2 + y^2 - 2x + 4y - 8 = 0$. Which meets the circle at $2$ points $A$ & $B$, then the minimum value of $PA + PB$ is

The equation of three circles are ${x^2} + {y^2} - 12x - 16y + 64 = 0,$ $3{x^2} + 3{y^2} - 36x + 81 = 0$ and ${x^2} + {y^2} - 16x + 81 = 0.$ The co-ordinates of the point from which the length of tangent drawn to each of the three circle is equal is

If the line $3x + 4y - 1 = 0$ touches the circle ${(x - 1)^2} + {(y - 2)^2} = {r^2}$, then the value of $r$ will be

The normal at the point $(3, 4)$ on a circle cuts the circle at the point $(-1, -2)$. Then the equation of the circle is

The equation of the chord of the circle ${x^2} + {y^2} = {a^2}$ having $({x_1},{y_1})$ as its mid-point is

  • [IIT 1983]