The kinetic energy possessed by a body of mass $m$ moving with a velocity $ v$ is equal to $\frac{1}{2}m{v^2}$, provided
The body moves with velocities comparable to that of light
The body moves with velocities negligible compared to the speed of light
The body moves with velocities greater than that of light
None of the above statement is correcst
The electric field of a plane electromagnetic wave propagating along the $x$ direction in vacuum is $\overrightarrow{ E }= E _{0} \hat{ j } \cos (\omega t - kx )$. The magnetic field $\overrightarrow{ B },$ at the moment $t =0$ is :
A mathematical representation of electromagnetic wave is given by the two equations $E = E_{max}\,\, cos (kx -\omega\,t)$ and $B = B_{max} cos\, (kx -\omega\,t),$ where $E_{max}$ is the amplitude of the electric field and $B_{max}$ is the amplitude of the magnetic field. What is the intensity in terms of $E_{max}$ and universal constants $μ_0, \in_0.$
An EM wave from air enters a medium. The electric fields are $\overrightarrow {{E_1}} = {E_{01}}\hat x\;cos\left[ {2\pi v\left( {\frac{z}{c} - t} \right)} \right]$ in air and $\overrightarrow {{E_2}} = {E_{02}}\hat x\;cos\left[ {k\left( {2z - ct} \right)} \right]$ in medium, where the wave number $k$ and frequency $v$ refer to their values in air. The medium is nonmagnetic. If $\varepsilon {_{{r_1}}}$ and $\varepsilon {_{{r_2}}}$ refer to relative permittivities of air and medium respectively, which of the following options is correct?
A plane electromagnetic wave in a non-magnetic dielectric medium is given by $\vec E\, = \,{\vec E_0}\,(4 \times {10^{ - 7}}\,x - 50t)$ with distance being in meter and time in seconds. The dielectric constant of the medium is
The ratio of average electric energy density and total average energy density of electromagnetic wave is: