$c \in R$ ની મહતમ કિમંત મેળવો કે જેથી સુરેખ સમીકરણો $x - cy - cz = 0 \,\,;\,\, cx - y + cz = 0 \,\,;\,\, cx + cy - z = 0 $ ને શૂન્યતર ઉકેલ છે .
$-1$
$0.5$
$2$
$0$
જો રેખીય સમીકરણો $x + y + z = 5$ ; $x = 2y + 2z = 6$ ; $x + 3y + \lambda z = u (\lambda \, \mu \in R)$ અનંત ઉકેલ ધરાવે છે તો $\lambda + \mu $ ની કિમંત મેળવો.
$\left| {\,\begin{array}{*{20}{c}}{a - b}&{b - c}&{c - a}\\{x - y}&{y - z}&{z - x}\\{p - q}&{q - r}&{r - p}\end{array}\,} \right| = $
સમીકરણની સંહતિ ${x_1} - {x_2} + {x_3} = 2,$ $\,3{x_1} - {x_2} + 2{x_3} = - 6$ અને $3{x_1} + {x_2} + {x_3} = - 18$ નો ઉકેલ . . . .
જેના માટે સમીકરણ સંહતિ
$ x+y+z=4, $
$ 2 x+5 y+5 z=17, $
$ x+2 y+\mathrm{m} z=\mathrm{n}$
ને અસંખ્ય ઉકલો હોય, તેવી $m, n$ ની કિંમતો .......... સમીક૨ણ નું સમાધાન કરે છે.
જો $k > 0$ માટે બિંદુઓ $(2k, k), (k, 2k)$ અને $(k, k)$ દ્વારા રચાતા ત્રિકોણનું ક્ષેત્રફળ $18$ એકમ હોય તો ત્રિકોણનું મધ્યકેન્દ્ર મેળવો.