The graph shown was obtained from experimental measurements of the period of oscillations $T$ for different masses $M$ placed in the scale pan on the lower end of the spring balance. The most likely reason for the line not passing through the origin is that the

49-1

  • A

    Spring did not obey Hooke's Law

  • B

    Amplitude of the oscillations was too large

  • C

    Clock used needed regulating

  • D

    Mass of the pan was neglected

Similar Questions

Which type of spring have fast oscillation ? Stiff or soft.

For the damped oscillator shown in Figure the mass mof the block is $200\; g , k=90 \;N m ^{-1}$ and the damping constant $b$ is $40 \;g s ^{-1} .$ Calculate

$(a)$ the period of oscillation,

$(b)$ time taken for its amplitude of vibrations to drop to half of Its inittal value, and

$(c)$ the time taken for its mechanical energy to drop to half its initial value.

Spring of spring constant $1200\, Nm^{-1}$ is mounted on a smooth frictionless surface and attached to a block of mass $3\, kg$. Block is pulled $2\, cm$ to the right and released. The angular frequency of oscillation is .... $ rad/sec$

A mass $m$ is suspended from the two coupled springs connected in series. The force constant for springs are ${K_1}$ and ${K_2}$. The time period of the suspended mass will be

  • [AIPMT 1990]

If the period of oscillation of mass $m$ suspended from a spring is $2\, sec$, then the period of mass $4m$ will be  .... $\sec$

  • [AIIMS 1998]