The graph of the function $f(x)=x+\frac{1}{8} \sin (2 \pi x), 0 \leq x \leq 1$ is shown below. Define $f_1(x)=f(x), f_{n+1}(x)=f\left(f_n(x)\right)$, for $n \geq 1$.
Which of the following statements are true?
$I.$ There are infinitely many $x \in[0,1]$ for which $\lim _{n \rightarrow \infty} f_n(x)=0$
$II.$ There are infinitely many $x \in[0,1]$ for which $\lim _{n \rightarrow \infty} f_n(x)=\frac{1}{2}$
$III.$ There are infinitely many $x \in[0,1]$ for which $\lim _{n \rightarrow \infty} f_n(x)=1$
$IV.$ There are infinitely many $x \in[0,1]$ for which $\lim _{n \rightarrow \infty} f_n(x)$ does not exist.
$I$ and $III$ only
$II$ only
$I,II,III$ only
$I, II, III$ and $IV$
Let $A$ be the set of all $50$ students of Class $X$ in a school. Let $f: A \rightarrow N$ be function defined by $f(x)=$ roll number of the student $x$. Show that $f$ is one-one but not onto.
Let $S=\{1,2,3,4\}$. Then the number of elements in the set $\{f: S \times S \rightarrow S: f$ is onto and $f(a, b)=f(b, a)$ $\geq a; \forall(a, b) \in S \times S\}$ is
If function $f : R \to S, f(x) = (\sin x -\sqrt 3 \cos x+1)$ is onto, then $S$ is equal to
Show that the function $f : R \rightarrow R$ given by $f ( x )= x ^{3}$ is injective.
Which pair $(s)$ of function $(s)$ is/are equal ?
where $\{x\}$ and $[x]$ denotes the fractional part $\&$ integral part functions.