Show that the function $f : R \rightarrow R$ given by $f ( x )= x ^{3}$ is injective.
$f : R \rightarrow R$ is given as $f ( x )= x ^{3}$
For one - one
Suppose $f(x)=f(y),$ where $x, \,y \in R$
$\Rightarrow x^{3}=y^{3}$ ........... $(1)$
Now, we need to show that $x=y$
Suppose $x \neq y,$ their cubes will also not be equal.
$\Rightarrow x^{3} \neq y^{3}$
However, this will be a contradiction to $(1)$.
$\therefore $ $x = y$ Hence, $f$ is injective.
If the domain of the function $f(x)=\log _e\left(4 x^2+11 x+6\right)+\sin ^{-1}$ $(4 x+3)+\cos ^{-1}\left(\frac{10 x+6}{3}\right) \text { is }(\alpha, \beta]$ Then $36|\alpha+\beta|$ is equal to :
The mid-point of the domain of the function $f(x)=\sqrt{4-\sqrt{2 x+5}}$ real $x$ is
Suppose $f$ is a function satisfying $f ( x + y )= f ( x )+ f ( y )$ for all $x , y \in N$ and $f (1)=\frac{1}{5}$. If $\sum \limits_{n=1}^m \frac{f(n)}{n(n+1)(n+2)}=\frac{1}{12}$, then $m$ is equal to $...............$.
Prove that the function $f: R \rightarrow R$, given by $f(x)=2 x,$ is one-one and onto.
If the function $f\,:\,R - \,\{ 1, - 1\} \to A$ defined by $f\,(x)\, = \frac{{{x^2}}}{{1 - {x^2}}},$ is surjective, then $A$ is equal to