Which pair $(s)$ of function $(s)$ is/are equal ?
where $\{x\}$ and $[x]$ denotes the fractional part $\&$ integral part functions.
$f(x) = cos(2tan ^{ -1} x) ; g(x) =$ $\frac{{1 - {x^2}}}{{1 + {x^2}}}$
$f(x) = \frac{{2x}}{{1 + {x^2}}} ; g(x) = sin(2cot ^{ -1} x)$
$f(x) ={e^{\ell n(\operatorname{sgn} {{\cot }^{ - 1}}x)}} ; g(x) ={e^{\ell n\left[ {1 + \left\{ x \right\}} \right]}}$
All of the above
Let $f(x) = sin\,x,\,\,g(x) = x.$
Statement $1:$ $f(x)\, \le \,g\,(x)$ for $x$ in $(0,\infty )$
Statement $2:$ $f(x)\, \le \,1$ for $(x)$ in $(0,\infty )$ but $g(x)\,\to \infty$ as $x\,\to \infty$
The domain of ${\sin ^{ - 1}}({\log _3}x)$ is
For $x\,\, \in \,R\,,x\, \ne \,0,$ let ${f_0}(x) = \frac{1}{{1 - x}}$ and ${f_{n + 1}}(x) = {f_0}({f_n}(x)),$ $n\, = 0,1,2,....$ Then the value of ${f_{100}}(3) + {f_1}\left( {\frac{2}{3}} \right) + {f_2}\left( {\frac{3}{2}} \right)$ is equal to
The domain of the function $f(x){ = ^{16 - x}}{\kern 1pt} {C_{2x - 1}}{ + ^{20 - 3x}}{\kern 1pt} {P_{4x - 5}}$, where the symbols have their usual meanings, is the set
If $f({x_1}) - f({x_2}) = f\left( {\frac{{{x_1} - {x_2}}}{{1 - {x_1}{x_2}}}} \right)$ for ${x_1},{x_2} \in [ - 1,\,1]$, then $f(x)$ is