दो परमाणुओं के मध्य अन्योन्यक्रिया बल सम्बन्ध $F =\alpha \beta \exp \left(-\frac{ x ^{2}}{\alpha kt }\right)$ से दिया जाता है जहाँ $x$ दूरी है, $k$ बोल्ट्जमैन नियतांक तथा $T$ तापमान है और $\alpha$ तथा $\beta$ दो स्थिरांक हैं। $\beta$ की विमा होगी।

  • [JEE MAIN 2019]
  • A

    $M^0L^2T^{-4}$

  • B

    $M^2LT^{-4}$

  • C

    $MLT^{-2}$

  • D

    $M^2L^2T^{-2}$

Similar Questions

दो भौतिक राशियों $A$ तथा $\mathrm{B}$ की परिकल्पना कीजिये जो एक दूसरे से संबंध $E=\frac{B-x^2}{A t}$ के द्वारा संबंधित है जहाँ $\mathrm{E}, \mathrm{x}$ तथा $\mathrm{t}$ की विमाएँ क्रमशः ऊर्जा, लम्बाई तथा समय की विमाओं के समान है। $\mathrm{AB}$ की विमां है :

  • [JEE MAIN 2024]

यदि ऊर्जा $(E)$, वेग $(v)$ तथा समय $(T)$ को मूल राशियाँ माना जाये तो पृष्ठ तनाव की विमा होंगी

  • [AIEEE 2012]

स्टोक के नियमानुसार, एक $a$ त्रिज्या का गोला जो कि , श्यानता गुणांक (coefficient of viscosity) के द्रव में $V$ चाल में चलता है, पर श्यानकर्षण बल (viscous drag) $F$ निम्न समीकरण से निरूपित किया जाता है : $F=a \eta_a v$ आयतन $V$ को निम्न समीकरण से निरूपित किया जा सकता है $\frac{V}{t}=k\left(\frac{p}{l}\right)^a \eta^b r^c$ जहाँ ${ }^k$ विमाविहीन स्थिरांक है। तो ${ }^a$, और $^c$ के सही मान क्या है ?

  • [KVPY 2017]

यदि संवेग $[ P ]$, क्षेत्रफल $[ A ]$ एवं समय $[ T ]$ का प्रयोग मूलभूत राशियों की तरह किया जाए, तो श्यानता गुणांक का विमीय सूत्र होगा :

  • [JEE MAIN 2022]

कोई बल $F = at + b{t^2}$से प्रदर्शित किया जाता है, जहाँ $t$ समय है $a$ व $b$ की विमायें होगी