रैखिक समीकरणों के निम्न निकाय $7 x+6 y-2 z=0$, $3 x+4 y+2 z=0$, $x-2 y-6 z=0$

  • [JEE MAIN 2020]
  • A

    $x =2 z$ को सन्तुष्ट करने वाले अनन्त हल $( x , y , z )$ हैं।

  • B

    का कोई हल नहीं है

  • C

    का केवल तुच्छ हल है

  • D

    $y =2 z$ को सन्तुष्ट करने वाले अनन्त हल $( x , y , z )$ हैं।

Similar Questions

समीकरण $\left| {\,\begin{array}{*{20}{c}}{x - 1}&1&1\\1&{x - 1}&1\\1&1&{x - 1}\end{array}\,} \right| = 0$ के मूल हैं

समीकरण $\left| {\,\begin{array}{*{20}{c}}{3 - x}&{ - 6}&3\\{ - 6}&{3 - x}&3\\3&3&{ - 6 - x}\end{array}\,} \right| = 0$ का मूल है

यदि शीर्ष $(2,-6),(5,4)$ और $(k, 4)$ वाले त्रिभुज का क्षेत्रफल $35$ वर्ग इकाई हो तो $k$ का मान है:

यदि $\left| {\,\begin{array}{*{20}{c}}{x + 1}&1&1\\2&{x + 2}&2\\3&3&{x + 3}\end{array}\,} \right| = 0,$ तो $x$ का मान होगा

यदि $\Delta_{1}=\left|\begin{array}{ccc} x & \sin \theta & \cos \theta \\ -\sin \theta & - x & 1 \\ \cos \theta & 1 & x \end{array}\right|$ तथा $\Delta_{2}=\left|\begin{array}{ccc}x & \sin 2 \theta & \cos 2 \theta \\ -\sin 2 \theta & -x & 1 \\ \cos 2 \theta & 1 & x\end{array}\right|, x \neq 0$; तो सभी $\theta \in\left(0, \frac{\pi}{2}\right)$ के लिए 

  • [JEE MAIN 2019]