The following results were obtained during kinetic studies of the reaction $2A+B$ $\to$ products
Experiment |
$[A]$ (in $mol\, L^{-1})$ |
$[B]$ (in $mol\, L^{-1})$ |
Initial rate of reaction (in $mol\, L^{-1}\,min^{-1})$ |
$I$ | $0.10$ | $0.20$ | $6.93 \times {10^{ - 3}}$ |
$II$ | $0.10$ | $0.25$ | $6.93 \times {10^{ - 3}}$ |
$III$ | $0.20$ | $0.30$ | $1.386 \times {10^{ - 2}}$ |
The time(in minutes) required to consume half of $A$ is
$5$
$10$
$1$
$100$
$n$ presence of $HCl$, sucrose gets hydrolysed into glucose and fructose. The concentration of sucrose was found to reduce form $0.4\,M $ to $0.2 \,M$ in $1$ hour and $0.1 \,M $ in $2$ hours. The order of the reaction is
The unit of rate constant of second order reaction is usually expressed as
For the reaction $3\,{A_{\,(g)\,}}\,\xrightarrow{K}\,{B_{(g)}}\, + \,\,{C_{(g)\,,}}K$ is ${10^{ - 14}}\,L/mol.\min .$ if $(A) = 0.5\,M$ then the value of $ - \frac{{d(A)}}{{dt}}$ (in $M / sec$ ) is.
The rate of reaction between $A$ and $B$ increases by a factor of $100,$ when the concentration of $A$ is increased $10$ folds. The order of reaction with respect to $A$ is
Which one of the following statements is wrong