The figure shows the velocity $(v)$ of a particle plotted against time $(t)$

22-280

  • A

    The particle changes its direction of motion at some point

  • B

    The acceleration of the particle remains constant

  • C

    The displacement of the particle is zero

  • D

    All of the above

Similar Questions

A particle starts from the origin at $\mathrm{t}=0$ with an initial velocity of $3.0 \hat{\mathrm{i}} \;\mathrm{m} / \mathrm{s}$ and moves in the $x-y$ plane with a constant acceleration $(6.0 \hat{\mathrm{i}}+4.0 \hat{\mathrm{j}}) \;\mathrm{m} / \mathrm{s}^{2} .$ The $\mathrm{x}$ -coordinate of the particle at the instant when its $y-$coordinate is $32\;\mathrm{m}$ is $D$ meters. The value of $D$ is

  • [JEE MAIN 2020]

A particle is moving eastwards with a speed of $6 \,m / s$. After $6 \,s$, the particle is found to be moving with same speed in a direction $60^{\circ}$ north of east. The magnitude of average acceleration in this interval of time is ....... $m / s ^2$

and direction of the vectors $\hat{ i }+\hat{ j }$, and $\hat{ i }-\hat{ j }$ ? What are the components of a vector $A =2 \hat{ i }+3 \hat{ j }$ along the directions of $\hat{ i }+\hat{ j }$ and $\hat{ i }-\hat{ j } ?$

A person walks $25.0^{\circ}$ north of east for $3.18 \,km$. How far would she have to walk due north and then due east to arrive at the same location?

  • [KVPY 2016]

A man wants to reach from $A$ to the opposite corner of the square $C$. The sides of the square are $100\, m$. A central square of $50\, m\,\times \,50\, m$ is filled with sand. Outside this square, he can walk at a speed $1\,ms^{-1}$. In the central square, he can walk only at a speed of $v\,ms^{-1}$ $(v < 1)$. What is smallest value of $v$ for which he can reach faster via a straight path through the sand than any path in the square outside the sand ?