and direction of the vectors $\hat{ i }+\hat{ j }$, and $\hat{ i }-\hat{ j }$ ? What are the components of a vector $A =2 \hat{ i }+3 \hat{ j }$ along the directions of $\hat{ i }+\hat{ j }$ and $\hat{ i }-\hat{ j } ?$
Consider a vector $\vec{P},$ given as:
$\vec {P}=\hat{ i }+\hat{ j }$
$P_{x} \hat{ i }+P_{y} \hat{ j }=\hat{ i }+\hat{ j }$
On comparing the components on both sides, we get:
$P_{x}=P_{y}=1$
$\overrightarrow{1 P 1}=\sqrt{P_{x}^{2}+P_{y}^{2}}=\sqrt{1^{2}+1^{2}}=\sqrt{2}$
Hence, the magnitude of the vector $\vec{\imath}+\vec{\jmath}$ is $\sqrt{2}$
Let $\theta$ be the angle made by the vector $\vec{P},$ with the $x$ -axis, as shown in the following figure.
$\therefore \tan \theta=\left(\frac{P_{y}}{P_{x}}\right)$
$\theta=\tan ^{-1}\left(\frac{1}{1}\right)=45^{\circ}$
Hence, the vector $\hat{ i }+\hat{ j }$ makes an angle of $45^{\circ}$ with the $x$ -axis.
Let $\vec{Q}=\hat{ i }-\hat{ j }$
$Q, \hat{ i }-Q, \hat{ j }=\hat{ i }-\hat{ j }$
$Q_{x}=Q_{y}=1$
$|\vec{Q}|=\sqrt{Q_{r}^{2}+Q_{y}^{2}}=\sqrt{2}$
Hence, the magnitude of the vector $\vec{\imath}-\vec{\jmath}$ is $\sqrt{2}$
Let $\theta$ be the angle made by the vector $\vec{Q},$ with the $x$ - axis, as shown in the following figure.
$\therefore \tan \theta=\left(\frac{Q_{y}}{Q_{x}}\right)$
$\theta=-\tan ^{-1}\left(-\frac{1}{1}\right)=-45^{\circ}$
Hence, the vector $\hat{ i }-\hat{ j }$ makes an angle of $-45^{\circ}$ with the $x$ -axis.
It is given that:
$\vec{A}=2 \hat{ i }+3 \hat{ j }$
$A_{x} \hat{ i }+A_{y} \hat{ j }=2 \hat{ i }+3 \hat{ j }$
On comparing the coefficients of $\vec{\imath}$ and $\vec{\jmath},$ we have:
$A_{x}=2$ and $A_{y}=3$
$|\vec{A}|=\sqrt{2^{2}+3^{2}}=\sqrt{13}$
Let $\overrightarrow{A_{x}}$ make an angle $\theta$ with the $x$ -axis, as shown in the following figure.
$\therefore \tan \theta=\left(\frac{A_{y}}{A_{x}}\right)$
$\theta=\tan ^{-1}\left(\frac{3}{2}\right)$
$=\tan ^{-1}(1.5)=56.31^{\circ}$
Angle between the vectors $(2 \hat{ i }+3 \hat{ j })$ and $(\hat{ i }+\hat{ j }), \theta^{\prime}=56.31-45=11.31^{\circ}$
Component of vector $\vec{A}$, along the direction of $\vec{P}$, making and angle $\theta$
$=(A \cos \theta) \hat{P}=(A \cos 11.31) \frac{(i+\hat{ j })}{\sqrt{2}}$
$=\sqrt{13} \times \frac{0.9806}{\sqrt{2}}(\hat{ i }+\hat{ j })$
$=2.5(\hat{ i }+\hat{ j })$
$=\frac{25}{10} \times \sqrt{2}$
$=\frac{5}{\sqrt{2}}$
Let $\theta^{\prime}$ be the angle between the vectors $(2 \hat{ i }+3 \hat{ j })$ and $(\hat{ i }-\hat{ j })$
$\theta^{\prime \prime}=45+56.31=101.31^{\circ}$
Component of vector $\vec{A},$ along the direction of $\vec{Q},$ making and angle $\theta$
$=\left(A \cos \theta^{-}\right) \vec{Q}=\left(A \cos \theta^{\prime \prime}\right) \frac{\hat{ i }-\hat{ j }}{\sqrt{2}}$
$=\sqrt{13} \cos \left(901.31^{\circ}\right) \frac{(\hat{ i }-\hat{ j })}{\sqrt{2}}$
$=-\sqrt{\frac{13}{2}} \sin 11.30^{\circ}(\hat{ i }-\hat{ j })$
$=-2.550 \times 0.1961(\hat{ i }-\hat{ j })$
$=-0.5(\hat{ i }-\hat{ j })$
$=-\frac{5}{10} \times \sqrt{2}$
$=-\frac{1}{\sqrt{2}}$
A particle starts from rest and performing circular motion of constant radius with speed given by $v = \alpha \sqrt x$ where $\alpha$ is a constant and $x$ is the distance covered. The correct graph of magnitude of its tangential acceleration $(a_t)$ and centripetal acceleration $(a_c)$ versus $t$ will be:
A rigid rod is sliding. At some instant position of the rod is as shown in the figure. End $A$ has constant velocity $v_0$. At $t = 0, y = l$ .
Give explanation of position and displacement vectors for particle moving in a plane by giving suitable equations.
When the average and instantaneous accelerations are equal ?