The figure shows a hollow hemisphere of radius $R$ in which two charges $3q$ and $5q$ are placed symmetrically about the centre $O$ on the planar surface. The electric flux over the curved surface is
$\frac{{15}}{2}\frac{q}{{{\varepsilon _0}}}$
$\frac{{4q}}{{{\varepsilon _0}}}$
$\frac{q}{{{\varepsilon _0}}}$
$\frac{{2q}}{{{\varepsilon _0}}}$
A charge $q$ is surrounded by a closed surface consisting of an inverted cone of height $h$ and base radius $R$, and a hemisphere of radius $R$ as shown in the figure. The electric flux through the conical surface is $\frac{n q}{6 \epsilon_0}$ (in SI units). The value of $n$ is. . . .
In figure a point charge $+Q_1$ is at the centre of an imaginary spherical surface and another point charge $+Q_2$ is outside it. Point $P$ is on the surface of the sphere. Let ${\Phi _s}$be the net electric flux through the sphere and ${\vec E_p}$ be the electric field at point $P$ on the sphere. Which of the following statements is $TRUE$ ?
$q_1, q_2, q_3$ and $q_4$ are point charges located at point as shown in the figure and $S$ is a spherical Gaussian surface of radius $R$. Which of the following is true according to the Gauss's law
A point charge $+10\; \mu \,C$ is a distance $5 cm$ directly above the centre of a square of side $10 \;cm ,$ as shown in Figure. What is the magnitude of the electric flux through the square?
A charged particle $q$ is placed at the centre $O$ of cube of length $L$ $(A\,B\,C\,D\,E\,F\,G\,H)$. Another same charge $q$ is placed at a distance $L$ from $O$.Then the electric flux through $BGFC$ is