The equation of the lines on which the perpendiculars from the origin make ${30^o}$ angle with $x$-axis and which form a triangle of area $\frac{{50}}{{\sqrt 3 }}$ with axes, are

  • A

    $x + \sqrt 3 y \pm 10 = 0$

  • B

    $\sqrt 3 x + y \pm 10 = 0$

  • C

    $x \pm \sqrt 3 y - 10 = 0$

  • D

    None of these

Similar Questions

The sides of a rhombus $ABCD$ are parallel to the lines, $x - y + 2\, = 0$ and $7x - y + 3\, = 0$. If the diagonals of the rhombus intersect at $P( 1, 2)$ and the vertex $A$ ( different from the origin) is on the $y$ axis, then the ordinate of $A$ is

  • [JEE MAIN 2018]

One side of a square is inclined at an acute angle $\alpha$ with the positive $x-$axis, and one of its extremities is at the origin. If the remaining three vertices of the square lie above the $x-$axis and the side of a square is $4$, then the equation of the diagonal of the square which is not passing through the origin is

If the equation of the locus of a point equidistant from the points $({a_1},{b_1})$ and $({a_2},{b_2})$ is $({a_1} - {a_2})x + ({b_1} - {b_2})y + c = 0$, then the value of $‘c’$ is

  • [IIT 2003]

If the sum of the distances of a point from two perpendicular lines in a plane is $1$, then its locus is

  • [IIT 1992]

A point starts moving from $(1, 2)$ and its projections on $x$ and $y$ - axes are moving with velocities of $3m/s$ and $2m/s$ respectively. Its locus is