The energy of a system as a function of time $t$ is given as $E(t)=A^2 \exp (-\alpha t)$, where $\alpha=0.2 s ^{-1}$. The measurement of $A$ has an error of $1.25 \%$. If the error in the measurement of time is $1.50 \%$, the percentage error in the value of $E(t)$ at $t=5 s$ is
$1$
$2$
$3$
$4$
A physical quantity $X$ is related to four measurable quantities $a,\, b,\, c$ and $d$ as follows $X = a^2b^3c^{\frac {5}{2}}d^{-2}$. The percentange error in the measurement of $a,\, b,\, c$ and $d$ are $1\,\%$, $2\,\%$, $3\,\%$ and $4\,\%$ respectively. What is the percentage error in quantity $X$ ? If the value of $X$ calculated on the basis of the above relation is $2.763$, to what value should you round off the result.
If radius of the sphere is $(5.3 \pm 0.1)\;cm$. Then percentage error in its volume will be
The temperature of a metal coin is increased by $100^{\circ} C$ and its diameter increases by $0.15 \%$. Its area increases by nearly
Two resistors of resistances $R_1 = (300 \pm 3) \,\Omega $ and $R_2 = (500 \pm 4)$ are connected in series. The equivalent resistance of the series combination is
The resistance $R =\frac{V}{I}$ where $V= 100 \pm 5 \,volts$ and $ I = 10 \pm 0.2$ amperes. What is the total error in $R$ ......... $\%$