The ellipse $ 4x^2 + 9y^2 = 36$ and the hyperbola $ 4x^2 -y^2 = 4$ have the same foci and they intersect at right angles then the equation of the circle through the points of intersection of two conics is
$x^2 + y^2 = 5$
$\sqrt 5$ $(x^2 + y^2) - 3x - 4y = 0$
$ \sqrt 5$ $(x^2 + y^2) + 3x + 4y = 0$
$x^2 + y^2 = 25$
Let $S = 0$ is an ellipse whose vartices are the extremities of minor axis of the ellipse $E:\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,a > b$ If $S = 0$ passes through the foci of $E$ , then its eccentricity is (considering the eccentricity of $E$ as $e$ )
A focus of an ellipse is at the origin. The directrix is the line $x = 4$ and the eccentricity is $ \frac{1}{2}$ . Then the length of the semi-major axis is
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{100}+\frac{y^{2}}{400}=1$.
Let a line $L$ pass through the point of intersection of the lines $b x+10 y-8=0$ and $2 x-3 y=0$, $b \in R -\left\{\frac{4}{3}\right\}$. If the line $L$ also passes through the point $(1,1)$ and touches the circle $17\left( x ^{2}+ y ^{2}\right)=16$, then the eccentricity of the ellipse $\frac{x^{2}}{5}+\frac{y^{2}}{b^{2}}=1$ is.
If $P_1$ and $P_2$ are two points on the ellipse $\frac{{{x^2}}}{4} + {y^2} = 1$ at which the tangents are parallel to the chord joining the points $(0, 1)$ and $(2, 0)$, then the distance between $P_1$ and $P_2$ is