Let a line $L$ pass through the point of intersection of the lines $b x+10 y-8=0$ and $2 x-3 y=0$, $b \in R -\left\{\frac{4}{3}\right\}$. If the line $L$ also passes through the point $(1,1)$ and touches the circle $17\left( x ^{2}+ y ^{2}\right)=16$, then the eccentricity of the ellipse $\frac{x^{2}}{5}+\frac{y^{2}}{b^{2}}=1$ is.

  • [JEE MAIN 2022]
  • A

    $\frac{2}{\sqrt{5}}$

  • B

    $\sqrt{\frac{3}{5}}$

  • C

    $\frac{1}{\sqrt{5}}$

  • D

    $\sqrt{\frac{2}{5}}$

Similar Questions

If the distance between the foci of an ellipse is $6$ and the distance between its directrices is $12$, then the length of its latus rectum is

  • [JEE MAIN 2020]

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the latus rectum of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$

If the length of the latus rectum of an ellipse is $4\,units$ and the distance between a focus and its nearest vertex on the major axis is $\frac {3}{2}\,units$ , then its eccentricity is?

  • [JEE MAIN 2018]

If the length of the minor axis of an ellipse is equal to one fourth of the distance between the foci, then the eccentricity of the ellipse is :

  • [JEE MAIN 2025]

If $ \tan\  \theta _1. tan \theta _2 $ $= -\frac{{{a^2}}}{{{b^2}}}$  then the chord joining two points $\theta _1 \& \theta _2$  on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}}$ $= 1$  will subtend a right angle at :