Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{100}+\frac{y^{2}}{400}=1$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The given equation is $\frac{x^{2}}{100}+\frac{y^{2}}{400}=1$ or $\frac{x^{2}}{10^{2}}+\frac{y^{2}}{20^{2}}=1$

Here, the denominator of is greater than the denominator of $\frac{x^{2}}{100}$. 

Therefore, the major axis is along the $y-$ axis, while the minor axis is along the $x-$ axis.

On comparing the given equation with, $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$ we obtain $b=10$ and $a=20$

$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{400-100}=\sqrt{300}=10 \sqrt{3}$

Therefore,

The coordinates of the foci are $(0,\, \pm 10 \sqrt{3})$

The coordinates of the vertices are $(0,\,±20)$ 

Length of major axis $=2 a =40$

Length of minor axis $=2 b =20$

Eccentricity,  $e=\frac{c}{a}=\frac{10 \sqrt{3}}{20}=\frac{\sqrt{3}}{2}$

Length of latus rectum  $=\frac{2 b^{2}}{a}=\frac{2 \times 100}{20}=10$

Similar Questions

The eccentricity of the ellipse $ (x - 3)^2 + (y - 4)^2 =$ $\frac{{{y^2}}}{9}\,$  is

Let $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b$ be an ellipse, whose eccentricity is $\frac{1}{\sqrt{2}}$ and the length of the latus rectum is $\sqrt{14}$. Then the square of the eccentricity of $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is :

  • [JEE MAIN 2024]

Let $E_1: \frac{x^2}{9}+\frac{y^2}{4}=1$ be an ellipse. Ellipses $E_i$ 's are constructed such that their centres and eccentricities are same as that of $E _1$, and the length of minor axis of $E _{ i }$ is the length of major axis of $E _{ i +1}( i \geq 1)$. If $A _{ i }$ is the area of the ellipse $E _{ i }$, then $\frac{5}{\pi}\left(\sum_{ i =1}^{\infty} A _{ i }\right)$, is equal to _____

  • [JEE MAIN 2025]

A point on the ellipse, $4x^2 + 9y^2 = 36$, where the normal is parallel to the line, $4x -2y-5 = 0$ , is

  • [JEE MAIN 2013]

The eccentricity of the ellipse $4{x^2} + 9{y^2} + 8x + 36y + 4 = 0$ is