किसी भी बिन्दु $x,\,y,\,z$ (सभी मीटरों में) विद्युत विभव $V = 4{x^2}\,$ वोल्ट द्वारा दिया जाता है। बिन्दु $(1m,\,0,\,2m)$ पर विद्युत क्षेत्र वोल्ट/मीटर होगा
$8$, ऋणात्मक $X - $अक्ष की दिशा में
$8$, धनात्मक $X - $अक्ष की दिशा में
$16$, ऋणात्मक $X - $अक्ष की दिशा में
$16$, धनात्मक $Z - $अक्ष की दिशा में
निम्न चित्र में विभव $V$ का $x$-अक्ष पर पाँच क्षेत्रों में दूरी के साथ परिवर्तन दर्शाया गया है। इन क्षेत्रों में विद्युत क्षेत्र $E$ के लिए क्या सही है
आवेश-घनत्व $\rho(r)$ के किसी गोलीय-आवेश-वितरण, के अन्दर $N$ समविभव-पृष्ठ, जिनकी विभव है $V _{0}, V _{0}+\Delta V , V _{0}+2 \Delta V , \ldots \ldots V _{0}+ N \Delta V$ $(\Delta V >0)$, आरेखित किये गये हैं और उनकी त्रिज्याऐं क्रमश: $r_{0}, r_{1}, r_{2}, \ldots \ldots \ldots . . r_{N}$ हैं। यदि त्रिज्याओं का अन्तराल, सभी $V _{0}$ तथा $\Delta V$ के मानों के लिये, स्थिर है तब
किसी गोलाकार आवेशित गेंद के लिए गेंद के अंदर स्थित वैद्युत विभव का मान $r$ के साथ $V=2 a r^2+b$ के अनुसार परिवर्तित होता है: यहाँ, $a$ एवं $b$ स्थिरांक है, तथा $r$ केन्द्र से दूरी है। गेंद के अंदर आयतन आवेश घनत्व $-\lambda \mathrm{a} \varepsilon$ है। $\lambda$ का मान _____________ होगा। $\varepsilon=$ माध्यम की विद्युतशीलता
दो समान्तर प्लेटों के विभव क्रमश: $-10\,V$ एवं $+30\,V$ हैं। यदि प्लेटों के बीच की दूरी $2\,cm$ हो। तो प्लेटों के मध्य विद्युत क्षेत्र .......$V/m$ होगा
$A , B$ तथा $C$ किसी एकसमान विधुत क्षेत्र में तीन बिन्दु हैं विधुत विभव का मान: