The electric field in a region surrounding the origin is uniform and along the $x$ - axis. A small circle is drawn with the centre at the origin cutting the axes at points $A, B, C, D$ having co-ordinates $(a, 0), (0, a), (-a, 0), (0, -a)$; respectively as shown in figure then potential in minimum at the point
$A$
$B$
$C$
$D$
An electric field $\vec E\, = (25 \hat i + 30 \hat j)\,NC^{-1}$ exists in a region of space. If the potential at the origin is taken to be zero then the potential at $x\, = 2\, m, y\, = 2\, m$ is......$volt$
Is electrostatic potential vector or scalar ?
Shows that how the electrostatic potential varies with $\mathrm{r}$ for a point charge.
A spherical conductor of radius $2m$ is charged to a potential of $120\, V$. It is now placed inside another hollow spherical conductor of radius $6m$. Calculate the potential to which the bigger sphere would be raised......$V$