The electric current in a circular coil of four turns produces a magnetic induction $32\,T$ at its centre. The coil is unwound and is rewound into a circular coil of single turn, the magnetic induction at the centre of the coil by the same current will be $..........\,T$
$8$
$4$
$2$
$16$
In the given figure net magnetic field at $O$ will be
Consider the circular loop having current $i$ and with central point $O$. The magnetic field at the central point $O$ is
A long, straight wire is turned into a loop of radius $10\,cm$ (see figure). If a current of $8\, A$ is passed through the loop, then the value of the magnetic field and its direction at the centre $C$ of the loop shall be close to
Give definition of $1\, \mathrm{T}$ magnetic field.
A Helmholtz coil has pair of loops, each with $N$ turns and radius $R$. They are placed coaxially at distance $R$ and the same current $I$ flows through the loops in the same direction. The magnitude of magnetic field at $P$, midway between the centres $A$ and $C$, is given by (Refer to figure)