Which of the following function is surjective but not injective
$f : R \to R$ $f (x) = x^4 + 2x^3 - x^2 + 1$
$f : R \to R$ $f (x) = x^3 + x + 1$
$f : R \to R^+ f (x) =$ $\sqrt {1 + {x^2}} \,$
$f : R \to R f (x) = x^3 + 2x^2 - x + 1$
The domain of the function $f(x) = \frac{{{{\sin }^{ - 1}}(x - 3)}}{{\sqrt {9 - {x^2}} }}$ is
The range of the polynomial $P(x)=4 x^3-3 x$ as $x$ varies over the interval $\left(-\frac{1}{2}, \frac{1}{2}\right)$ is
Let $f(x)=2 x^{2}-x-1$ and $S =\{n \in Z :|f(n)| \leq 800\}$ . Then value of $\sum_{n \in S} f(n)$ is . . . . .
Range of ${\sin ^{ - 1\,}}\left( {\frac{{1 + {x^2}}}{{2 + {x^2}}}} \right)$ is
Range of $f(x) = sin^{-1} (\sqrt {x^2 + x +1})$ is -