The distance of the point $'\theta '$on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ from a focus is
$a(e + \cos \theta )$
$a(e - \cos \theta )$
$a(1 + e\cos \theta )$
$a(1 + 2e\cos \theta )$
The locus of the foot of perpendicular drawn from the centre of the ellipse ${x^2} + 3{y^2} = 6$ on any tangent to it is
The equation of the ellipse whose one of the vertices is $(0,7)$ and the corresponding directrix is $y = 12$, is
Let the maximum area of the triangle that can be inscribed in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{4}=1$, a $>2$, having one of its vertices at one end of the major axis of the ellipse and one of its sides parallel to the $y$-axis, be $6 \sqrt{3}$. Then the eccentricity of the ellispe is
An ellipse with its minor and major axis parallel to the coordinate axes passes through $(0,0),(1,0)$ and $(0,2)$. One of its foci lies on the $Y$-axis. The eccentricity of the ellipse is
The equation of the normal at the point $(2, 3)$ on the ellipse $9{x^2} + 16{y^2} = 180$, is