If the circles ${x^2} + {y^2} - 9 = 0$ and ${x^2} + {y^2} + 2ax + 2y + 1 = 0$ touch each other, then $a =$

  • A

    $-4/ 3$

  • B

    $4/3$

  • C

    $1$

  • D

    $(a)$ and $(b)$ both

Similar Questions

Consider a family of circles which are passing through the point $(- 1, 1)$ and are tangent to $x-$ axis. If $(h, k)$ are the coordinate of the centre of the circles, then the set of values of $k$ is given by the interval

  • [AIEEE 2007]

If the circles ${x^2} + {y^2} + 2x + 2ky + 6 = 0$ and ${x^2} + {y^2} + 2ky + k = 0$ intersect orthogonally, then $k$ is

  • [IIT 2000]

If one of the diameters of the circle $x^{2}+y^{2}-2 \sqrt{2} x$ $-6 \sqrt{2} y+14=0$ is a chord of the circle $(x-2 \sqrt{2})^{2}$ $+(y-2 \sqrt{2})^{2}=r^{2}$, then the value of $r^{2}$ is equal to

  • [JEE MAIN 2022]

The equation of radical axis of the circles $2{x^2} + 2{y^2} - 7x = 0$ and ${x^2} + {y^2} - 4y - 7 = 0$ is

Let

$A=\left\{(x, y) \in R \times R \mid 2 x^{2}+2 y^{2}-2 x-2 y=1\right\}$

$B=\left\{(x, y) \in R \times R \mid 4 x^{2}+4 y^{2}-16 y+7=0\right\} \text { and }$

$C=\left\{(x, y) \in R \times R \mid x^{2}+y^{2}-4 x-2 y+5 \leq r^{2}\right\}$

Then the minimum value of $|r|$ such that $A \cup B \subseteq C$ is equal to:

  • [JEE MAIN 2021]