Let $C: x^2+y^2=4$ and $C^{\prime}: x^2+y^2-4 \lambda x+9=0$ be two circles. If the set of all values of $\lambda$ so that the circles $\mathrm{C}$ and $\mathrm{C}^{\prime}$ intersect at two distinct points, is ${R}-[a, b]$, then the point $(8 a+12,16 b-20)$ lies on the curve:

  • [JEE MAIN 2024]
  • A

    $x^2+2 y^2-5 x+6 y=3$

  • B

    $5 x^2-y=-11$

  • C

    $x^2-4 y^2=7$

  • D

    $6 x^2+y^2=42$

Similar Questions

The number of common tangent$(s)$ to the circles $x^2 + y^2 + 2x + 8y - 23 = 0$ and $x^2 + y^2 - 4x - 10y + 19 = 0$ is :

The centre of the circle, which cuts orthogonally each of the three circles ${x^2} + {y^2} + 2x + 17y + 4 = 0,$ ${x^2} + {y^2} + 7x + 6y + 11 = 0,$ ${x^2} + {y^2} - x + 22y + 3 = 0$ is

The equation of the circle which passes through the intersection of ${x^2} + {y^2} + 13x - 3y = 0$and $2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$ and whose centre lies on $13x + 30y = 0$ is

Let $C_1$ and $C_2$ be the centres of the circles $x^2 + y^2 -2x -2y -2 = 0$ and $x^2 + y^2 - 6x-6y + 14 = 0$ respectively. If $P$ and $Q$ are the points of intersection of these circles, then the area (in sq. units) of the quadrilateral $PC_1QC_2$ is ............. $\mathrm{sq. \, units}$

  • [JEE MAIN 2019]

Let the latus ractum of the parabola $y ^{2}=4 x$ be the common chord to the circles $C _{1}$ and $C _{2}$ each of them having radius $2 \sqrt{5}$. Then, the distance between the centres of the circles $C _{1}$ and $C _{2}$ is

  • [JEE MAIN 2020]