एक समान्तर चतुर्भुज की भुजायें $lx + my + n = 0,$ $lx + my + n' = 0$, $mx + ly + n = 0$, $mx + ly + n' = 0$ हैं, तो इनके विकर्णों के बीच कोण होगा
$\frac{\pi }{3}$
$\frac{\pi }{2}$
${\tan ^{ - 1}}\left( {\frac{{{l^2} - {m^2}}}{{{l^2} + {m^2}}}} \right)$
${\tan ^{ - 1}}\left( {\frac{{2lm}}{{{l^2} + {m^2}}}} \right)$
एक सरल रेखा, $\mathrm{x}$-अक्ष तथा $\mathrm{y}$-अक्ष की धनात्मक दिशाओं पर क्रमशः $\mathrm{OA}=\mathrm{a}$ तथा $\mathrm{OB}=\mathrm{b}$ अंतःखंड़ करती है। यदि मूलबिंदु $\mathrm{O}$ से इस रेखा पर अभिलंब $\mathrm{y}$-अक्ष की धनात्मक दिशा से $\frac{\pi}{6}$ का कोण बनाता है तथा $\triangle \mathrm{OAB}$ का क्षेत्रफल $\frac{98}{3} \sqrt{3}$ है, तो $\mathrm{a}^2-\mathrm{b}^2$ बराबर है :
रेखाओं $xy = 0$ व $x + y = 1$ द्वारा बने त्रिभुज का लम्बकेन्द्र है
$\mathrm{X}$ - अक्ष, $\mathrm{Y}$ - अक्ष तथा रेखा $3 \mathrm{x}+4 \mathrm{y}=60$ एक त्रिभुज बनाते है। तो ऐसे बिन्दुओं $\mathrm{P}(\mathrm{a}, \mathrm{b})$ जहाँ $\mathrm{a}$ पूर्णांक है तथा $b, a$ का एक गुणज है, जो त्रिभुज के अंदर हैं, की संख्या है____________.
किसी वर्ग का एक शीर्ष $(3, 4)$ एवं विकर्ण $x + 2y = 1$ है, तो दूसरा विकर्ण जो दिये गये शीर्ष से गुजरता है, होगा
यदि बिन्दुओं $A, \,B,\, C$ के निर्देशांक क्रमश: $(-1, 5),\, (0, 0)$ तथा $(2, 2)$ हों और $D$, बिन्दु $BC$ का मध्य बिन्दु हो, तो बिन्दु $B$ से रेखा $AD$ पर डाले गये लम्ब का समीकरण है