The density of a cube is measured by measuring its mass and the length of its sides. If the maximum error in the measurement of mass and length are $3\%$ and $2\%$ respectively, then find the maximum error in the measurement of the density of cube.......... $\%$

  • [AIPMT 1996]
  • A

    $12$

  • B

    $14$

  • C

    $7$

  • D

    $9$

Similar Questions

A physical parameter a can be determined by measuring the parameters $b, c, d $ and $e $ using the relation $a =$ ${b^\alpha }{c^\beta }/{d^\gamma }{e^\delta }$. If the maximum errors in the measurement of $b, c, d$ and e are ${b_1}\%$, ${c_1}\%$, ${d_1}\%$ and ${e_1}\%$, then the maximum error in the value of a determined by the experiment is

The percentage errors in the measurement of mass and speed are $2\%$ and $3\%$ respectively. How much will be the maximum error in the estimation of the kinetic energy obtained by measuring mass and speed  ......... $\%$

  • [AIPMT 1995]

Three students $S_{1}, S_{2}$ and $S_{3}$ perform an experiment for determining the acceleration due to gravity $(g)$ using a simple pendulum. They use different lengths of pendulum and record time for different number of oscillations. The observations are as shown in the table.

Student No. Length of pendulum $(cm)$ No. of oscillations $(n)$ Total time for oscillations Time period $(s)$
$1.$ $64.0$ $8$ $128.0$ $16.0$
$2.$ $64.0$ $4$ $64.0$ $16.0$
$3.$ $20.0$ $4$ $36.0$ $9.0$

(Least count of length $=0.1 \,{m}$, least count for time $=0.1\, {s}$ )

If $E_{1}, E_{2}$ and $E_{3}$ are the percentage errors in $'g'$ for students $1,2$ and $3$ respectively, then the minimum percentage error is obtained by student no. ....... .

  • [JEE MAIN 2021]

Two resistance are measured in $Ohm$ and is given as

$R_1 = 3 \Omega \pm 1\%$  and  $R_2 = 6 \Omega \pm 2\%$ When they are connected  in parallel, the percentage error in equivalent resistance is.......... $\%$

An experiment measures quantities $a, b$ and $c$, and quantity $X$ is calculated from $X=a b^{2} / c^{3}$. If the percentage error in $a$, $b$ and $c$ are $\pm 1 \%, \pm 3 \%$ and $\pm 2 \%$, respectively, then the percentage error in $X$ will be