The coefficient of $\frac{1}{x}$ in the expansion of  ${\left( {1 + x} \right)^n}{\left( {1 + \frac{1}{x}} \right)^n}$ is :-

  • A

    $\frac{{n!}}{{(n - 1)!\left( {n + 1} \right)!}}$

  • B

    $\frac{{2n!}}{{(n - 1)!\left( {n + 1} \right)!}}$

  • C

    $\frac{{(2n)!}}{{(2n - 1)!\left( {2n + 1} \right)!}}$

  • D

    None of these

Similar Questions

Find the $4^{\text {th }}$ term in the expansion of $(x-2 y)^{12}$

Find the term independent of $x$ in the expansion of $\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{6}$

Find the cocfficient of $a^{5} b^{7}$ in $(a-2 b)^{12}$

The number of integral terms in the expansion of ${({5^{1/2}} + {7^{1/6}})^{642}}$ is

Coefficient of $x^6$ in the binomial expansion ${\left( {\frac{{4{x^2}}}{3}\; - \;\frac{3}{{2x}}} \right)^9}$ is