Find the $4^{\text {th }}$ term in the expansion of $(x-2 y)^{12}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is known $(r+1)^{\text {th }}$ term, $T_{r+1},$ in the binomial expansion of $(a+b)^{n}$ is  given by ${T_{r + 1}} = {\,^n}{C_r}{a^{n - r}}{b^r}$

Thus, the $4^{\text {th }}$ term in the expansion of $\left(x^{2}-2 y\right)^{12}$ is

${T_4} = {T_{3 + 1}} = {\,^{12}}{C_3}{(x)^{12 - 3}}{( - 2y)^3} = {( - 1)^3} \cdot \frac{{12!}}{{3!9!}} \cdot {x^9} \cdot {(2)^3} \cdot {y^3}$

$=-\frac{12 \cdot 11 \cdot 10}{3 \cdot 2} \cdot(2)^{3} x^{9} y^{3}=-1760 x^{9} y^{3}$

Similar Questions

In the expansion of $(1+x)\left(1-x^2\right)\left(1+\frac{3}{x}+\frac{3}{x^2}+\frac{1}{x^3}\right)^5, x \neq 0$, the sum of the coefficient of $x^3$ and $x^{-13}$ is equal to

  • [JEE MAIN 2024]

Evaluate $(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}$

The coefficient of ${x^7}$ in the expansion of ${\left( {\frac{{{x^2}}}{2} - \frac{2}{x}} \right)^8}$ is

The coefficient of the middle term in the binomial expansion in powers of $x$ of $(1 + \alpha x)^4$ and of $(1 - \alpha x)^6$ is the same if  $\alpha$ equals

In the expansion of $(1 + x)^{43}$ if the co-efficients of the $(2r + 1)^{th}$ and the $(r + 2)^{th}$ terms are equal, the value of $r$ is :