Find the term independent of $x$ in the expansion of $\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{6}$
We have ${T_{r + 1}} = {\,^6}{C_r}{\left( {\frac{3}{2}{x^2}} \right)^{6 - r}}\left( { - \frac{1}{{3x}}} \right)$
$ = {\,^6}{C_r}{\left( {\frac{3}{2}} \right)^{6 - r}}{\left( {{x^2}} \right)^{6 - r}}{( - 1)^r}{\left( {\frac{1}{x}} \right)^r}\left( {\frac{1}{{{3^r}}}} \right)$
$ = {( - 1)^r}{\quad ^6}{C_r}\quad \frac{{{{(3)}^{6 - 2r}}}}{{{{(2)}^{6 - r}}}}\quad {x^{12 - 3r}}$
The term will be independent of $x$ if the index of $x$ is zero, i.e., $12-3 r=0 .$ Thus, $r=4$
Hence $5^{\text {th }}$ term is independent of $x$ and is given by ${( - 1)^4}{\,^6}{C_4}\frac{{{{(3)}^{6 - 8}}}}{{{{(2)}^{6 - 4}}}} = \frac{5}{{12}}$
If the expansion of ${\left( {{y^2} + \frac{c}{y}} \right)^5}$, the coefficient of $y$ will be
Find the $13^{\text {th }}$ term in the expansion of $\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}, x \neq 0$
In the expansion of $(1+x)\left(1-x^2\right)\left(1+\frac{3}{x}+\frac{3}{x^2}+\frac{1}{x^3}\right)^5, x \neq 0$, the sum of the coefficient of $x^3$ and $x^{-13}$ is equal to
If $^n{C_{r - 2}} = 36$ , $^n{C_{r - 1}} = 84$ and $^n{C_r} = 126$ , then value of $^n{C_{2r}}$ is
The coefficient of the middle term in the binomial expansion in powers of $x$ of $(1 + \alpha x)^4$ and of $(1 - \alpha x)^6$ is the same if $\alpha$ equals