The coefficient of $x^{13}$ in the expansion of $(1 -x)^5(1 + x + x^2 + x^3)^4$ is :-
$-4$
$0$
$4$
none of these
In the expansion of $\left(\frac{\mathrm{x}}{\cos \theta}+\frac{1}{\mathrm{x} \sin \theta}\right)^{16},$ if $\ell_{1}$ is the least value of the term independent of $x$ when $\frac{\pi}{8} \leq \theta \leq \frac{\pi}{4}$ and $\ell_{2}$ is the least value of the term independent of $x$ when $\frac{\pi}{16} \leq \theta \leq \frac{\pi}{8},$ then the ratio $\ell_{2}: \ell_{1}$ is equal to
The coefficient of $x^{-5}$ in the binomial expansion of ${\left( {\frac{{x + 1}}{{{x^{\frac{2}{3}}} - {x^{\frac{1}{3}}} + 1}} - \frac{{x - 1}}{{x - {x^{\frac{1}{2}}}}}} \right)^{10}}$ where $x \ne 0, 1$ , is
The term independent of $x$ in expansion of ${\left( {\frac{{x + 1}}{{{x^{2/3}} - {x^{\frac{1}{3}}} + 1\;}}--\frac{{x - 1}}{{x - {x^{1/2}}}}} \right)^{10}}$ is
The term independent of $x$ in the expansion of ${\left( {{x^2} - \frac{1}{x}} \right)^9}$ is
Number of rational terms in the expansion of ${\left( {\sqrt 2 \,\, + \,\,\sqrt[4]{3}} \right)^{100}}$ is :