$x-y$ સમતલમાં ગતિ કરતા કણ માટે ના યામો નીચે મુજબ આપી શકાય છે. $x=2+4 \mathrm{t}, y=3 \mathrm{t}+8 \mathrm{t}^2$. કણની ગતિ. . . . . .થશે.
અનિયમિત પ્રવેગી ગતિ
સુરેખ દિશામાં વેગ હોય તેવી નિયમિત પ્રવેગી ગતિ
નિયમિત વેગ સુરેખ દિશામાં
પરવાલયકાર દિશામાં વેગ હોય તેવી નિયમિત પ્રવેગી ગતિ
અવકાશમાં કોઈ સ્વૈચ્છિક ગતિ માટે નીચે આપેલા સંબંધો પૈકી ક્યો સાચો છે ?
$(a)$ $\left. v _{\text {average }}=(1 / 2) \text { (v }\left(t_{1}\right)+ v \left(t_{2}\right)\right)$
$(b)$ $v _{\text {average }}=\left[ r \left(t_{2}\right)- r \left(t_{1}\right)\right] /\left(t_{2}-t_{1}\right)$
$(c)$ $v (t)= v (0)+ a t$
$(d)$ $r (t)= r (0)+ v (0) t+(1 / 2)$ a $t^{2}$
$(e)$ $a _{\text {merage }}=\left[ v \left(t_{2}\right)- v \left(t_{1}\right)\right] /\left(t_{2}-t_{1}\right)$
(અહીં ‘સરેરાશ મૂલ્ય $t_{1}$ થી $t_{2}$ સમયગાળા સાથે સંબંધિત ભૌતિકરાશિનું સરેરાશ મૂલ્ય છે.)
સરેરાશ પ્રવેગ અને તાત્ક્ષણિક પ્રવેગ સમજાવો.
એક માણસ ખુલ્લા મેદાનમાં એેવી રીતે ગતિ કરે છે કે $10 \,m$ સુધી સીધી રેખામાં ગતિ કર્યા બાદ તે તેની ડાબી બાજુથી $60^{\circ}$ તીવ્ર વળાંક લે છે. તો પ્રારંભથી $8$માં વળાંક સુધી કરેલુ સ્થાનાંતર ......... $m$ હશે.
એક બલૂન જમીન પર રહેલ બિંદુ $A$ થી ઉપર તરફ શિરોલંબ દિશામાં ગતિ કરે છે. આકૃતિમાં દર્શાવ્યા પ્રમાણે જ્યારે એક છોકરી (જે બિંદુ $B$ પર છે ) જે $A$ બિંદુથી $d$ અંતરે છે, તે બલૂન જ્યારે $h_1$ ઊંચાઈ પર પહોચે ત્યારે તે બલૂનને શિરોલંબ સાથે $45^{\circ}$ ના ખૂણે જોવે છે. જ્યારે બલૂન જ્યારે $h_2$ ઊંચાઈ પર પહોચે ત્યારે તે $2.464\, d$ જેટલું અંતર ખસીને(બિંદુ $C$ પર) બલૂનને શિરોલંબ સાથે $60^{\circ}$ ના ખૂણે જોવે છે. તો ઊંચાઈ $h _{2}$ કેટલી હશે? ($\tan \left.30^{\circ}=0.5774\right)$
સમયના વિધેયના સ્વરૂપમાં કોઇ કણના સ્થાન સદિશ $\overrightarrow {R} = 4\sin \left( {2\pi t} \right)\hat i + 4\cos \left( {2\pi t} \right)\hat j$ વડે આપવામાં આવે છે, જયાં $R$ મીટરમાં, $t$ સેકન્ડમાં અને $\hat i$ અને $\hat j$ એ અનુક્રમે $x-$ અક્ષ અને $y-$ અક્ષની દિશામાંના એકમ સદિશો છે. કણની ગતિ માટે નીચેનામાંથી કયું વિધાન ખોટું છે?