The co-ordinates of a particle moving in $x-y$ plane are given by :  $\mathrm{x}=2+4 \mathrm{t}, \mathrm{y}=3 \mathrm{t}+8 \mathrm{t}^2 .$ The motion of the particle is :

  • [JEE MAIN 2024]
  • A

    non-uniformly accelerated.

  • B

    uniformly accelerated having motion along a straight line.

  • C

    uniform motion along a straight line.

  • D

    uniformly accelerated having motion along a parabolic path.

Similar Questions

A particle is moving along the $x-$axis with its coordinate with the time '$t$' given be $\mathrm{x}(\mathrm{t})=10+8 \mathrm{t}-3 \mathrm{t}^{2} .$ Another particle is moving the $y-$axis with its coordinate as a function of time given by $\mathrm{y}(\mathrm{t})=5-8 \mathrm{t}^{3} .$ At $\mathrm{t}=1\; \mathrm{s},$ the speed of the second particle as measured in the frame of the first particle is given as $\sqrt{\mathrm{v}} .$ Then $\mathrm{v}$ (in $\mathrm{m} / \mathrm{s})$ is

  • [JEE MAIN 2020]

A particle moves $21\, m$ along the vector $6\hat i + 2\hat j + 3\hat k$ , then $14\, m$ along the vector $3\hat i - 2\hat j + 6\hat k$ . Its total displacement (in meters) is

A swimmer dived off a cliff with a running horizontal leap. What must his minimum speed be just as he leaves the top of the cliff so that he will miss the edge at the bottom ....... $m/s$ is $2\ m$ wide and $10\ m$ belows the top of the cliff .

Derive equation of motion of body moving in two dimensions

$\overrightarrow v \, = \,\overrightarrow {{v_0}} \, + \overrightarrow a t$ and $\overrightarrow r \, = \,\overrightarrow {{r_0}} \, + \overrightarrow {{v_0}} t\, + \,\frac{1}{2}g{t^2}$.

A particle moves in the $xy$ plane with a constant acceleration $'g'$ in the negative $y$-direction. Its equation of motion is $y = ax-bx^2$, where $a$ and $b$ are constants. Which of the following are correct?