The Cartesian product $A$ $\times$ $A$ has $9$ elements among which are found $(-1,0)$ and $(0,1).$ Find the set $A$ and the remaining elements of $A \times A$.
We know that if $n(A)=p$ and $n(B)=q,$ then $n(A \times B)=p q$
$\therefore n(A \times A)=n(A) \times n(A)$
It is given that $n(A \times A)=9$
$\therefore n(A) \times n(A)=9$
$\Rightarrow n(A)=3$
The ordered pairs $(-1,0)$ and $(0,1)$ are two of the nine elements of $A \times A$
We know that $A \times A=\{(a, a): a \in A\} .$ Therefore, $-1,0,$ and $1$ are elements of $A$
Since $n(A)=3,$ it is clear that $A=\{-1,0,1\}$
The remaining element of set $A \times A$ are $(-1,-1),(-1,1),(0,-1),(0,0),(1,-1),(1,0),$ and $(1,1)$
If $A = \{ 2,\,4,\,5\} ,\,\,B = \{ 7,\,\,8,\,9\} ,$ then $n(A \times B)$ is equal to
The solution set of $8x \equiv 6(\bmod 14),\,x \in Z$, are
If $P=\{a, b, c\}$ and $Q=\{r\},$ form the sets $P \times Q$ and $P \times Q$ Are these two products equal?
If $(1, 3), (2, 5)$ and $(3, 3)$ are three elements of $A × B$ and the total number of elements in $A \times B$ is $6$, then the remaining elements of $A \times B$ are
Let $A, B, C$ are three sets such that $n(A \cap B) = n(B \cap C) = n(C \cap A) = n(A \cap B \cap C) = 2$, then $n((A × B) \cap (B × C)) $ is equal to -