A medium having dielectric constant $K>1$ fills the space between the plates of a parallel plate capacitor. The plates have large area, and the distance between them is $d$. The capacitor is connected to a battery of voltage $V$. as shown in Figure ($a$). Now, both the plates are moved by a distance of $\frac{d}{2}$ from their original positions, as shown in Figure ($b$).
In the process of going from the configuration depicted in Figure ($a$) to that in Figure ($b$), which of the following statement($s$) is(are) correct?
The electric field inside the dielectric material is reduced by a factor of $2 K$.
The capacitance is decreased by a factor of $\frac{1}{K+1}$.
The voltage between the capacitor plates is increased by a factor of $(K+1)$.
The work done in the process DOES NOT depend on the presence of the dielectric material.
A parallel plate capacitor has plate area $100\, m ^{2}$ and plate separation of $10\, m$. The space between the plates is filled up to a thickness $5\, m$ with a material of dielectric constant of $10 .$ The resultant capacitance of the system is $'x'$ $pF$. The value of $\varepsilon_{0}=8.85 \times 10^{-12} F \cdot m ^{-1}$ The value of $'x'$ to the nearest integer is............
Write the capacitance of parallel plate capacitor with medium of dielectric of dielectric constant $\mathrm{K}$.
Three capacitors $A,B$ and $C$ are connected with battery $emf\, \varepsilon $. All capacitors are identical initially. If dielectric slab is inserted between plates of capacitor $A$ slowy with help of external force then
Two parallel plate capacitors of capacity $C$ and $3\,C$ are connected in parallel combination and charged to a potential difference $18\,V$. The battery is then disconnected and the space between the plates of the capacitor of capacity $C$ is completely filled with a material of dielectric constant $9$. The final potential difference across the combination of capacitors will be $V$
Two thin dielectric slabs of dielectric constants $K_1$ and $K_2$ $(K_1 < K_2)$ are inserted between plates of a parallel plate capacitor, as shown in the figure. The variation of electric field $E$ between the plates with distance $d$ as measured from plate $P$ is correctly shown by