The area of the parallelogram formed by the lines $y = mx,\,y = mx + 1,\,y = nx$ and $y = nx + 1$ equals

  • [IIT 2001]
  • A

    $\frac{{|m + n|}}{{{{(m - n)}^2}}}$

  • B

    $\frac{2}{{|m + n|}}$

  • C

    $\frac{1}{{|m + n|}}$

  • D

    $\frac{1}{{|m - n|}}$

Similar Questions

If the equation of the locus of a point equidistant from the points $({a_1},{b_1})$ and $({a_2},{b_2})$ is $({a_1} - {a_2})x + ({b_1} - {b_2})y + c = 0$, then the value of $‘c’$ is

  • [IIT 2003]

Let two points be $\mathrm{A}(1,-1)$ and $\mathrm{B}(0,2) .$ If a point $\mathrm{P}\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right)$ be such that the area of $\Delta \mathrm{PAB}=5\; \mathrm{sq}$ units and it lies on the line, $3 x+y-4 \lambda=0$ then a value of $\lambda$ is

  • [JEE MAIN 2020]

Let $A B C D$ be a tetrahedron such that the edges $AB , AC$ and $AD$ are mutually perpendicular. Let the areas of the triangles $ABC , ACD$ and $ADB$ be $5,6$ and $7$ square units respectively. Then the area (in square units) of the $\triangle BCD$ is equal to :

  • [JEE MAIN 2025]

The medians $AD$ and $BE$ of a triangle with vertices $A\;(0,\;b),\;B\;(0,\;0)$ and $C\;(a,\;0)$ are perpendicular to each other, if

Given $A(1, 1)$ and $AB$ is any line through it cutting the $x-$ axis in $B$. If $AC$ is perpendicular to $AB$ and meets the $y-$ axis in $C$, then the equation of locus of mid- point $P$ of $BC$ is