Let $A B C D$ be a tetrahedron such that the edges $AB , AC$ and $AD$ are mutually perpendicular. Let the areas of the triangles $ABC , ACD$ and $ADB$ be $5,6$ and $7$ square units respectively. Then the area (in square units) of the $\triangle BCD$ is equal to :

  • [JEE MAIN 2025]
  • A
    $\sqrt{340}$
  • B
    $12$
  • C
    $\sqrt{110}$
  • D
    $7 \sqrt{3}$

Similar Questions

Let the equations of two adjacent sides of a parallelogram $A B C D$ be $2 x-3 y=-23$ and $5 x+4 y$ $=23$. If the equation of its one diagonal $AC$ is $3 x +$ $7 y=23$ and the distance of A from the other diagonal is $d$, then $50 d ^2$ is equal to $........$.

  • [JEE MAIN 2023]

A rod of length eight units moves such that its ends $A$ and $B$ always lie on the lines $x-y+2=0$ and $y+2=0$, respectively. If the locus of the point $P$, that divides the $\operatorname{rod} AB$ internally in the ratio $2: 1$ is $9\left(x^2+\alpha y^2+\beta x y+\gamma x+28 y\right)-76=0$, then $\alpha-\beta-\gamma$ is equal to :

  • [JEE MAIN 2025]

Given three points $P, Q, R$ with $P(5, 3)$ and $R$ lies on the $x-$ axis. If equation of $RQ$ is $x -2y = 2$ and $PQ$ is parallel to the $x-$ axis, then the centroid of $\Delta PQR$ lies on the line

The co-ordinates of the vertices $A$ and $B$ of an isosceles triangle $ABC (AC = BC)$ are $(-2,3)$ and $(2,0)$ respectively. $A$ line parallel to $AB$ and having a $y$ -intercept equal  to $\frac{43}{12}$ passes through $C$, then the co-ordinates of $C$ are :-

If $x^2-y^2+2 h x y+2 g x+2 f y+c=0$ is the locus of a point, which moves such that it is always equidistant from the lines $x+2 y+7=0$ and $2 x-y$ $+8=0$, then the value of $\mathrm{g}+\mathrm{c}+\mathrm{h}-\mathrm{f}$ equals

  • [JEE MAIN 2024]