The angle between $(\overrightarrow A - \overrightarrow B )$ and $(\overrightarrow A \times \overrightarrow B )$ is $(\overrightarrow{ A } \neq \overrightarrow{ B })$
$120$
$45$
$90$
$60$
Let $\overrightarrow A = \hat iA\,\cos \theta + \hat jA\,\sin \theta $ be any vector. Another vector $\overrightarrow B $ which is normal to $\overrightarrow A$ is
If $\vec A$ and $\vec B$ are perpendicular vectors and vector $\vec A = 5\hat i + 7\hat j - 3\hat k$ and $\vec B = 2\hat i + 2\hat j - a\hat k.$ The value of $a$ is
If $|\overrightarrow A \times \overrightarrow B |\, = \,|\overrightarrow A \,.\,\overrightarrow B |,$ then angle between $\overrightarrow A $ and $\overrightarrow B $ will be ........ $^o$
The value of $(\overrightarrow A + \overrightarrow B )\, \times (\overrightarrow A - \overrightarrow B )$ is