Temperature difference of $120\,^oC$ is maintained between two ends of a uniform rod $AB$ of length $2L$. Another bent rod $PQ$, of same cross-section as $AB$ and length $\frac{{3L}}{2}$, is connected across $AB$ (See figure). In steady state, temperature difference between $P$ and $Q$ will be close to .......... $^oC$
$45$
$75$
$60$
$35$
Two different rods $A$ and $B$ are kept as shown in figure. The ratio of thermal conductivities of $A$ and $B$ is
Select correct statement related to heat .......
Wires $A$ and $B$ have identical lengths and have circular cross-sections. The radius of $A$ is twice the radius of $B$ $i.e.$ ${r_A} = 2{r_B}$. For a given temperature difference between the two ends, both wires conduct heat at the same rate. The relation between the thermal conductivities is given by
A deep rectangular pond of surface area $A,$ containing water (denstity $=\rho,$ specific heat capactly $=s$ ), is located In a region where the outside air temperature is at a steady value of $-26^{\circ} {C}$. The thickness of the frozen ice layer In this pond, at a certaln Instant Is $x$.
Taking the thermal conductivity of Ice as ${K}$, and its specific latent heat of fusion as $L$, the rate of Increase of the thickness of ice layer, at this instant would be given by
If $K_{1}$ and $K_{2}$ are the thermal conductivities $L_{1}$ and $L _{2}$ are the lengths and $A _{1}$ and $A _{2}$ are the cross sectional areas of steel and copper rods respectively such that $\frac{K_{2}}{K_{1}}=9, \frac{A_{1}}{A_{2}}=2, \frac{L_{1}}{L_{2}}=2$.
Then, for the arrangement as shown in the figure. The value of temperature $T$ of the steel - copper junction in the steady state will be ........... $^{\circ} C$