Suppose the quadratic polynomial $p(x)=a x^2+b x+c$ has positive coefficient $a, b, c$ such that $b-a=c-b$. If $p(x)=0$ has integer roots $\alpha$ and $\beta$ then what could be the possible value of $\alpha+\beta+\alpha \beta$ if $0 \leq \alpha+\beta+\alpha \beta \leq 8$

  • [KVPY 2016]
  • A

    $3$

  • B

    $5$

  • C

    $7$

  • D

    $14$

Similar Questions

If $\alpha , \beta$ and $\gamma$ are the roots of ${x^3} + 8 = 0$, then the equation whose roots are ${\alpha ^2},{\beta ^2}$ and  ${\gamma ^2}$ is

Equation $\frac{3}{{x - {a^3}}} + \frac{5}{{x - {a^5}}} + \frac{7}{{x - {a^7}}} = 0,a > 1$ has

Let $m$ and $n$ be the numbers of real roots of the quadratic equations $x^2-12 x+[x]+31=0$ and $x ^2-5| x +2|-4=0$ respectively, where $[ x ]$ denotes the greatest integer $\leq x$. Then $m ^2+ mn + n ^2$ is equal to $..............$.

  • [JEE MAIN 2023]

Consider the equation ${x^2} + \alpha x + \beta  = 0$ having roots $\alpha ,\beta $ such that $\alpha  \ne \beta $ .Also consider the inequality $\left| {\left| {y - \beta } \right| - \alpha } \right| < \alpha $ ,then

Let $a$ be the largest real root and $b$ be the smallest real root of the polynomial equation $x^6-6 x^5+15 x^4-20 x^3+15 x^2-6 x+1=0$ Then $\frac{a^2+b^2}{a+b+1}$ is

  • [KVPY 2021]