Equation $\frac{3}{{x - {a^3}}} + \frac{5}{{x - {a^5}}} + \frac{7}{{x - {a^7}}} = 0,a > 1$ has

  • A

    Two real and positive roots

  • B

    Two real and negative roots

  • C

    No real roots

  • D

    one positive and other negative roots

Similar Questions

Let $f(x)=x^4+a x^3+b x^2+c$ be a polynomial with real coefficients such that $f(1)=-9$. Suppose that $i \sqrt{3}$ is a root of the equation $4 x^3+3 a x^2+2 b x=0$, where $i=\sqrt{-1}$. If $\alpha_1, \alpha_2, \alpha_3$, and $\alpha_4$ are all the roots of the equation $f(x)=0$, then $\left|\alpha_1\right|^2+\left|\alpha_2\right|^2+\left|\alpha_3\right|^2+\left|\alpha_4\right|^2$ is equal to. . . . . .

  • [IIT 2024]

In a cubic equation coefficient of $x^2$ is zero and remaining coefficient are real has one root $\alpha = 3 + 4\, i$ and remaining roots are $\beta$ and $\gamma$ then $\alpha \beta \gamma$ is :-

The number of ordered pairs $(x, y)$ of real numbers that satisfy the simultaneous equations $x+y^2=x^2+y=12$ is

  • [KVPY 2015]

Let $a$ ,$b$, $c$ , $d$ , $e$ be five numbers satisfying the system of equations

                            $2a + b + c + d + e = 6$
                            $a + 2b + c + d + e = 12$
                            $a + b + 2c + d + e = 24$
                            $a + b + c + 2d + e = 48$
                            $a + b + c + d + 2e = 96$ ,

then $|c|$ is equal to 

Let $p(x)=x^2-5 x+a$ and $q(x)=x^2-3 x+b$, where $a$ and $b$ are positive integers. Suppose HCF $(p(x), q(x))=x-1$ and $k(x)=1 cm (p(x), q(x))$ If the coefficient of the highest degree term of $k(x)$ is 1 , then sum of the roots of $(x-1)+k(x)$ is

  • [KVPY 2014]