Suppose $f:[2,\;2] \to R$ is defined by $f(x) = \left\{ \begin{array}{l} - 1\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{for}}\; - 2 \le x \le 0\\x - 1\;\;\;\;\;{\rm{for}}\;0 \le x \le 2\end{array} \right.$, then $\{ x \in ( - 2,\;2):x \le 0$ and $f(|x|) = x\} = $
$\{ - 1\} $
${0}$
$\{ - 1/2\} $
$\phi $
The range of function $f : R \rightarrow R$, $f(x) = \frac{{{{(x\, + \,1)}^4}}}{{{x^4} + \,1}}$ is
If $f(x)$ satisfies $f(7 -x) = f(7 + x)\ \forall \,x\, \in \,R$ such that $f(x)$ has exactly $5$ real roots which are all distinct such that sum of the real roots is $S$ then $S/7$ is equal to
Let $A$ be the set of all $50$ students of Class $X$ in a school. Let $f: A \rightarrow N$ be function defined by $f(x)=$ roll number of the student $x$. Show that $f$ is one-one but not onto.
Let $[x]$ denote the greatest integer $\leq x$, where $x \in R$. If the domain of the real valued function $\mathrm{f}(\mathrm{x})=\sqrt{\frac{[\mathrm{x}] \mid-2}{\sqrt{[\mathrm{x}] \mid-3}}}$ is $(-\infty, \mathrm{a}) \cup[\mathrm{b}, \mathrm{c}) \cup[4, \infty), \mathrm{a}\,<\,\mathrm{b}\,<\,\mathrm{c}$, then the value of $\mathrm{a}+\mathrm{b}+\mathrm{c}$ is:
If $f(x) = \frac{{{{\cos }^2}x + {{\sin }^4}x}}{{{{\sin }^2}x + {{\cos }^4}x}}$ for $x \in R$, then $f(2002) = $